Where do the graphs of f of x equals cosine of the quantity x over 2 and g of x equals square root of 2 minus cosine of the quantity x over 2 intersect on the interval [0, 360°)?

Given the functions f(x) and g(x) defined as:
[tex]\begin{gathered} f(x)=\cos (\frac{x}{2}) \\ g(x)=\sqrt[]{2}-\cos (\frac{x}{2}) \end{gathered}[/tex]The intersection of the graphs will be at f(x) = g(x):
[tex]\begin{gathered} \cos (\frac{x}{2})=\sqrt[]{2}-\cos (\frac{x}{2}) \\ 2\cos (\frac{x}{2})=\sqrt[]{2} \\ \cos (\frac{x}{2})=\frac{\sqrt[]{2}}{2}=\frac{1}{\sqrt[]{2}} \end{gathered}[/tex]This is true for:
[tex]\begin{gathered} \frac{x}{2}=45\degree\Rightarrow x=90\degree \\ \frac{x}{2}=315\degree\Rightarrow x=630\degree \end{gathered}[/tex]But only x = 90° is within the interval [0°, 360°)
Answer: 90°