Respuesta :

$4242.86

Explanation

to find the annual loan payment we need to use the formula

[tex]A=P\frac{r(1+r)^n}{(1+r)^n-1}[/tex]

where

[tex]\begin{gathered} A\text{ is the payment amount per period} \\ P\text{ is the initial principal} \\ r\text{ is the interest rate per period\lparen in decimal\rparen} \\ n=total\text{ number of paymentos of periods} \end{gathered}[/tex]

so

Step 1

a)Let

[tex]\begin{gathered} P=20000 \\ r=11\text{ \%=}\frac{11}{100}=0.11 \\ t=7 \end{gathered}[/tex]

b)now, replace to find A

[tex]\begin{gathered} A=P\frac{r(1+r)^n}{(1+r)^n-1} \\ A=20000\frac{0.11(1+0.11)^7}{(1+0.11)^7-1} \\ A=20000\frac{0.11(1.11)^7}{(1.11)^7-1} \\ A=20000\frac{0.2283}{1.0761} \\ A=4242.86 \end{gathered}[/tex]

therefore, the annual loan payment would be $4242.86

I hope this helps you