$4242.86
Explanation
to find the annual loan payment we need to use the formula
[tex]A=P\frac{r(1+r)^n}{(1+r)^n-1}[/tex]where
[tex]\begin{gathered} A\text{ is the payment amount per period} \\ P\text{ is the initial principal} \\ r\text{ is the interest rate per period\lparen in decimal\rparen} \\ n=total\text{ number of paymentos of periods} \end{gathered}[/tex]so
Step 1
a)Let
[tex]\begin{gathered} P=20000 \\ r=11\text{ \%=}\frac{11}{100}=0.11 \\ t=7 \end{gathered}[/tex]b)now, replace to find A
[tex]\begin{gathered} A=P\frac{r(1+r)^n}{(1+r)^n-1} \\ A=20000\frac{0.11(1+0.11)^7}{(1+0.11)^7-1} \\ A=20000\frac{0.11(1.11)^7}{(1.11)^7-1} \\ A=20000\frac{0.2283}{1.0761} \\ A=4242.86 \end{gathered}[/tex]therefore, the annual loan payment would be $4242.86
I hope this helps you