I need help on 2. The triangle one; finding the perimeter and area. The triangle is scalene if you can’t see it by the way.

Given,
The measure of base of triangle is 20 cm.
The measure of altitude of the triangle is 12 cm.
The expression of area of the triangle is,
[tex]A=\frac{1}{2}\times base\times\text{altitude}[/tex]Substituting the values in the expression then,
[tex]\begin{gathered} A=\frac{1}{2}\times20\times\text{1}2 \\ A=10\times\text{1}2 \\ A=120cm^2 \end{gathered}[/tex]The area of the triangle is 120 cm^2.
Consider,
The third side of the triangle is 2x cm.
The semiperimeter of the triangle is,
[tex]S=\frac{20+12+2x}{2}=16+x[/tex]Area of triangle,
[tex]\begin{gathered} A=\sqrt[]{(16+x)(16+x-12)(16+x-20)(16+x-x)} \\ A=\sqrt[]{(16+x)(x+4)(x-4)16} \\ A=\sqrt[]{(256+16x)(x^2-16)} \\ A=\sqrt[]{256x^2+16x^3-256x-4096} \end{gathered}[/tex]Equation both area then,
[tex]\begin{gathered} 120=\sqrt[]{16x^3+256x^2-256x-4096} \\ 14400=16x^3+256x^2-256x-4096 \\ \frac{18496}{16}=x^3+16x^2-16x \\ x^3+16x^2-16x-1156=0 \end{gathered}[/tex]After solving this expression, the value of x is 7.38.
The third side of the triangle is,
[tex]2x=2\times7.38=[/tex]