How do I classify the triangle? Is this an acute triangle

To classify this triangle we must find the values of the inner angles.
1) First, we find the value of x.
We know that the inner angles of a triangle sum 180°, so we have:
[tex]\begin{gathered} (7x-11)\degree+(2x-3)\degree+(5x-2)\degree=180\degree, \\ 14x-16=180. \end{gathered}[/tex]Solving for x the last equation, we get:
[tex]\begin{gathered} 14x=180+16=196, \\ x=\frac{196}{14}=14. \end{gathered}[/tex]2) Using the value x = 14 we compute the values of the angles:
[tex]\begin{gathered} a=(7\cdot14-11)\degree=87\degree, \\ b=(5\cdot14-2)\degree=68\degree, \\ c=(2\cdot14-3)\degree=25\degree. \end{gathered}[/tex]3) Because all the inner angles of the triangle are different and less than 90°, we have a scalene acute triangle.
Answer: scalene acute triangle