Respuesta :

We will revise some rules of ln

[tex]\begin{gathered} m\ln (b)=\ln (b)^m\rightarrow(1) \\ \ln a+\ln b-\ln c=\ln \frac{ab}{c}\rightarrow(2) \end{gathered}[/tex]

In the given expression

[tex]3\ln a-\frac{1}{2}(\ln b+\ln c^2)[/tex]

By using the rule (1)

[tex]3\ln a-\frac{1}{2}(\ln b+\ln c^2)=\ln a^3-(\ln b+\ln c^2)^{\frac{1}{2}}[/tex]

By using rule (2) in the second term

[tex]\ln a^3-(\ln b+\ln c^2)^{\frac{1}{2}}=\ln a^3-\ln (bc^2)^{\frac{1}{2}}[/tex]

By using the rule of the exponent on b and c

[tex](bc^2)^{\frac{1}{2}}=(b^{\frac{1}{2}})(c^{2\times\frac{1}{2}})=b^{\frac{1}{2}}c=c\sqrt[]{b}[/tex]

The expression is

[tex]\ln a^3-\ln (bc^2)^{\frac{1}{2}}=\ln a^3-\ln c\sqrt[]{b}[/tex]

By using rule (2), then

[tex]\ln a^3-\ln c\sqrt[]{b}=\ln (\frac{a^3}{c\sqrt[]{b}})[/tex]

The answer is D