(T) Given: pair of points (7,5) and (10,9)
To find: The Slope?
Explanation:
We can find the slope by using the formula
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
We have given the points
(7,5) and (10,9)
Hence,
[tex]\begin{gathered} x_1=7 \\ y_1=5 \\ x_2=10 \\ y_2=9 \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} Slope=\frac{9-5}{10-7} \\ \\ Slope=\frac{4}{3} \end{gathered}[/tex]
Thus, slope = 4/3.
(B) Given: pair of points (-8,2) and (-5,-4)
To find: The Slope?
Explanation:
We can find the slope by using the formula
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
We have given the points
(-8,2) and (-5,-4)
Hence,
[tex]\begin{gathered} x_1=-8 \\ y_1=2 \\ x_2=-5 \\ y_2=-4 \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} Slope=\frac{-4-2}{-5-(-8_)} \\ \\ Slope=\frac{-6}{3} \\ \\ Slope=-2 \end{gathered}[/tex]
Thus, slope =-2.
(H) Given: pair of points (2,-2) and (-4,-1)
To find: The Slope?
Explanation:
We can find the slope by using the formula
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
We have given the points
(2,-2) and (-4,-1)
Hence,
[tex]\begin{gathered} x_1=2 \\ y_1=-2 \\ x_2=-4 \\ y_2=-1 \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} Slope=\frac{-1-(-2)}{-4-2} \\ \\ Slope=\frac{1}{-6} \\ \\ Slope=-\frac{1}{6} \end{gathered}[/tex]
Thus, slope =-1/6.
(S) Given: pair of points (-4,9) and (-11,7)
To find: The Slope?
Explanation:
We can find the slope by using the formula
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
We have given the points
(-4,9) and (-11,7)
Hence,
[tex]\begin{gathered} x_1=-4 \\ y_1=9 \\ x_2=-11 \\ y_2=7 \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} Slope=\frac{7-9}{-11-(-4)} \\ \\ Slope=\frac{-2}{-11+4}=\frac{-2}{-7} \\ \\ Slope=\frac{2}{7} \end{gathered}[/tex]
Thus, slope = 2/7.
(O) Given: pair of points (5,-1) and (4,-6)
To find: The Slope?
Explanation:
We can find the slope by using the formula
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
We have given the points
(5,-1) and (4,-6)
Hence,
[tex]\begin{gathered} x_1=5 \\ y_1=-1 \\ x_2=4 \\ y_2=-6 \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} Slope=\frac{-6-(-1)}{4-5} \\ \\ Slope=\frac{-6+1}{-1}=\frac{-5}{-1} \\ \\ Slope=5 \end{gathered}[/tex]
Thus, slope = 5.
(16) Given: pair of points (-5,-2) and (9,2)
To find: The Slope?
Explanation:
We can find the slope by using the formula
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
We have given the points
(-5,-2) and (9,2)
Hence,
[tex]\begin{gathered} x_1=-5 \\ y_1=-2 \\ x_2=9 \\ y_2=2 \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} Slope=\frac{2-(-2)}{9-(-5)} \\ \\ Slope=\frac{2+2}{9+5}=\frac{4}{14} \\ \\ Slope=\frac{2}{7} \end{gathered}[/tex]
Thus, slope =2/7.
(8) Given: pair of points (-10,-6) and (2,-8)
To find: The Slope?
Explanation:
We can find the slope by using the formula
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
We have given the points
(-10,-6) and (2,-8)
Hence,
[tex]\begin{gathered} x_1=-10 \\ y_1=-6 \\ x_2=2 \\ y_2=-8 \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} Slope=\frac{-8-(-6)}{2-(-10)} \\ \\ Slope=\frac{-8+6}{2+10}=\frac{-2}{12} \\ \\ Slope=-\frac{1}{6} \end{gathered}[/tex]
Thus, slope = -1/6.
(3) Given: pair of points (-2,1) and (-8,-7)
To find: The Slope?
Explanation:
We can find the slope by using the formula
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
We have given the points
(-2,1) and (-8,-7)
Hence,
[tex]\begin{gathered} x_1=-2 \\ y_1=1 \\ x_2=-8 \\ y_2=-7 \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} Slope=\frac{-7-1}{-8-(-2)} \\ \\ Slope=\frac{-8}{-8+2}=\frac{-8}{-6} \\ \\ Slope=\frac{4}{3} \end{gathered}[/tex]
Thus, slope = 4/3.
(5) Given: pair of points (-4,-2) and (-3,3)
To find: The Slope?
Explanation:
We can find the slope by using the formula
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
We have given the points
(-4,-2) and (-3,3)
Hence,
[tex]\begin{gathered} x_1=-4 \\ y_1=-2 \\ x_2=-3 \\ y_2=3 \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} Slope=\frac{3-(-2)}{-3-(-4)} \\ \\ Slope=\frac{3+2}{-3+4}=\frac{5}{1} \\ \\ Slope=5 \end{gathered}[/tex]
Thus, slope = 5.
(14) Given: pair of points (-2,-4) and (-7,6)
To find: The Slope?
Explanation:
We can find the slope by using the formula
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
We have given the points
(-2,-4) and (-7,6)
Hence,
[tex]\begin{gathered} x_1=-2 \\ y_1=-4 \\ x_2=-7 \\ y_2=6 \end{gathered}[/tex]
Therefore,
[tex]\begin{gathered} Slope=\frac{6-(-4)}{-7-(-2)} \\ \\ Slope=\frac{6+4}{-7+2}=\frac{10}{-5} \\ \\ Slope=-2 \end{gathered}[/tex]
Thus, slope = -2.
Answer:
(T ) = (3)
(B) = (14)
(H) = (8)
(S) = (16)
(O) = (5)