2
Type the correct answer in each box. Use numerals instead of words.
Multiply the expressions.
3.12 + 21 - 21
-212 - 21 + 12
212 + 251 + 63
612 + 71 - 49
If a = 1, find the values of b, c, and d that make the given expression equivalent to the expression below.
ar +
CI + d
b=
,and du
,C=
Reset
Next

2Type the correct answer in each box Use numerals instead of wordsMultiply the expressions312 21 21212 21 12212 251 63612 71 49If a 1 find the values of b c and class=

Respuesta :

SOLUTION

[tex]\begin{gathered} \frac{3x^2+2x-21}{-2x^2-2x\text{ +12}}\times\frac{2x^2+25x+63}{6x^2+7x-49} \\ \\ \frac{3x^2+9x-7x-21}{-2x^2-6x+4x+12}\times\frac{2x^2+18x+7x+63}{6x^2+21x-14x-49} \\ \\ \frac{3x\mleft(x+3\mright)-7\mleft(x+3\mright)}{-2x(x+3)+4(x+3)}\times\frac{2x(x+9)+7(x+9)}{3x(2x+7)-7(2x+7)} \\ \\ \frac{(3x-7)(x+3)}{(-2x+4)(x+3)}\times\frac{(2x+7)(x+9)}{(3x-7)(2x+7)} \end{gathered}[/tex]

Cancelling out the common terms we have

[tex]\begin{gathered} \frac{(3x-7)}{(-2x+4)_{}}\times\frac{(x+9)}{3x-7)} \\ \text{cancelling out (3x-7) we have } \\ \frac{(x+9)}{(-2x+4)} \end{gathered}[/tex]

Therefore, from

[tex]\begin{gathered} \frac{(x+9)}{(-2x+4)} \\ \text{if a =1, then b = 9, c = -2 and d = 4} \end{gathered}[/tex]

So, b = 9,

c = -2

d = 4