Respuesta :

Answer:

The volume of a pentagonal pyramid is given below as

[tex]V=\frac{1}{3}\times area\text{ of base}\times\text{ height}[/tex]

Step 1:

The base is a pentagon which contains 5 regular triangles of same base

[tex]\begin{gathered} base=8cm \\ h=5.5cm \end{gathered}[/tex]

Area of a triangle is

[tex]\begin{gathered} A_{triangle}=\frac{1}{2\text{ }}\times base\text{ }\times height \\ A_{triangle}=\frac{1}{2}\times8cm\times5.5cm \\ A_{triangle}=22cm^2 \end{gathered}[/tex]

Then the area of the base will be

[tex]\begin{gathered} A_{base}=5\times area\text{ of each triangle} \\ A_{base}=5\times22cm^2 \\ A_{base}=110cm^2 \end{gathered}[/tex]

Therefore,

The volume of the pyramid will be

[tex]\begin{gathered} V_{pyramid}=\frac{1}{3}\times basearea\times height \\ V_{pyramid}=\frac{1}{3}\times110cm^2\times12cm \\ V_{pyramid}=440cm^3 \end{gathered}[/tex]

Hence,

The final answer is

[tex]\Rightarrow440[/tex]