f(x) =5x(squared) - 7x +6a) Find the coordinates of the turning point on the graph of y = f(x).b) Show that the turning point is a minimum point.

fx 5xsquared 7x 6a Find the coordinates of the turning point on the graph of y fxb Show that the turning point is a minimum point class=

Respuesta :

Given:

[tex]f\mleft(x\mright)=5x^2-7x+6[/tex]

To find:

a) The coordinates of the turning point on the graph of y = f(x).

b) Show that the turning point is a minimum point.

Explanation:

a) Using the first derivative test,

[tex]\begin{gathered} f^{\prime}(x)=0 \\ 10x-7=0 \\ x=\frac{7}{10} \end{gathered}[/tex]

Substituting in the given function we get,

[tex]\begin{gathered} f(\frac{7}{10})=5(\frac{7}{10})^2-7(\frac{7}{10})+6 \\ =\frac{71}{20} \end{gathered}[/tex]

Therefore, the turning point is,

[tex](\frac{7}{10},\frac{71}{20})[/tex]

b) Differentiating with respect to x again,

[tex]f^{\prime}^{\prime}(x)=10>0[/tex]

Therefore, the function has a minimum value at the turning point.

Hence, the turning point is a minimum point.