Solution:
using percents (rather than fractions) on the left side of the following equation
so multiply the right side by 100 to compensate:
EQUATION 1
[tex]5\text{ a + 8 b = (}1710)(100)[/tex]EQUATION 2:
[tex]a\text{ + b = 30000}[/tex]Solving for b in the last equation, we obtain:
EQUATION 3:
[tex]b\text{ = 30000 -a}[/tex]now, replacing this b in equation 1, we get:
[tex]5\text{ a + 8 (30000-a) = (}1710)(100)[/tex]this is equivalent to:
[tex]5a\text{ + 240000- 8a = 171000}[/tex]Putting the like terms together we obtain:
[tex]5a\text{ - 8a = 171000}-240000[/tex]this is equivalent to:
[tex]-3a\text{ = -69000}[/tex]or
[tex]a\text{ =}\frac{69000}{3}=23000[/tex]now, replacing this value in equation 3, we get:
[tex]b\text{ = 30000 -a}=\text{ 30000-23000= 7000}[/tex]thus, the correct answer is:
23000 at 5%
7000 at 8%