Respuesta :

Answer:

The length of line segment BC is;

[tex]BC=\sqrt[]{65}[/tex]

Explanation:

Given the graph in the attached image

The coordinates of B and C is;

[tex]\begin{gathered} B(3,5) \\ C(2,-3) \end{gathered}[/tex]

Recall that the formula to calculate the distance between two points is;

[tex]d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

substituting the coordinates, we have;

[tex]\begin{gathered} BC=\sqrt[]{(2-3)^2+(-3-5)^2} \\ BC=\sqrt[]{(-1)^2+(-8)^2} \\ BC=\sqrt[]{1+64} \\ BC=\sqrt[]{65} \end{gathered}[/tex]

Therefore, the length of line segment BC is;

[tex]BC=\sqrt[]{65}[/tex]