Respuesta :

Consider the standard form of a quadratic equation is,

[tex]y=ax^2+bx+c[/tex]

It's vertex (h,k) is given by,

[tex]\begin{gathered} h=\frac{-b}{2a} \\ k=f(\frac{-b}{2a}) \end{gathered}[/tex]

Now consider the given equation,

[tex]y=x^2-2x+4[/tex]

So its vertex will be,

[tex]\begin{gathered} h=\frac{-(-2)}{2(1)}=1 \\ k=(1)^2-2(1)+4=1-2+4=3 \end{gathered}[/tex]

So the vertex of the quadratic equation lies at (1,3).

Now, observe the given graphs.

It is found that only first graph shows the vertex at point (1,3).

So option a will be the correct choice.