Respuesta :

The given partial fraction is:

[tex]\frac{x^2+x+1}{x(x-1)^2}[/tex]

There are some constants, A, B, and C such that:

[tex]\frac{x^2+x+1}{x(x-1)^2}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^2}[/tex]

Multiplying both sides by x(x - 1)², it follows:

[tex]x^2+x+1=A(x-1)^2+Bx(x-1)+Cx[/tex]

Substituting x=1 it follows that:

[tex]\begin{gathered} 1+1+1=C \\ \text{Therefore,} \\ C=3 \end{gathered}[/tex]

Substituting C=3 into the equation, it follows that:

[tex]x^2+x+1=A(x-1)^2+Bx(x-1)+3x[/tex]

Expand the right side of the equation:

[tex]x^2+x+1=A(x^2-2x+1)^{}+B(x^2-x)+3x[/tex]

By comparing coefficients of , we have that:

[tex]A+B=1-------(1)[/tex]

By comparing coefficient of constant, it follows that:

[tex]A=1---------(2)[/tex]

Substitute A=1 into equation (1), it follows that:

[tex]\begin{gathered} 1+B=1 \\ \text{Therefore, } \\ B=0 \end{gathered}[/tex]

Subtracting equation (2) from equation (1), it follows that:

[tex]\begin{gathered} 2B=2 \\ B=1 \end{gathered}[/tex]

Therefore, the partial fraction decomposes to:

[tex]\frac{1}{x}+\frac{3}{(x-1)^2}[/tex]

z