Given that
There is a square pyramid with its height, h = 12 units and base edge, a = 10 units
And we have to find the surface area of the pyramid.
Explanation -
The surface area of the square pyramid is given as
[tex]\begin{gathered} Area=a^2+2a\sqrt{\frac{a^2}{4}+h^2} \\ \\ where\text{ a = base edge length and h = height} \end{gathered}[/tex]On substituting the values we have
[tex]\begin{gathered} A=10^2+2\times10\sqrt{\frac{10^2}{4}+12^2} \\ \\ A=100+20\sqrt{\frac{100}{4}+144} \\ \\ A=100+20\sqrt{25+144} \\ \\ A=100+20\sqrt{169} \\ \\ A=100+20\sqrt{13\times13} \\ A=100+20\times13\text{ sq units} \\ A=100+260\text{ sq units} \\ A=360\text{ sq units} \end{gathered}[/tex]So the required area is 360 sq units and OPTION B is correct.
Final answer -
Therefore the final answer is 360.