Respuesta :

Answer:

[tex]y(x)=-\frac{3}{5}x-\frac{1}{5}[/tex]

Explanation: We need to find the equation of the line in y-intercept form:

Given the two points:

[tex]\begin{gathered} P_1(3,-2) \\ P_2(-2,1) \end{gathered}[/tex]

The standard form of the equation of the line is:

[tex]y(x)=mx+b[/tex]

Where:

[tex]\begin{gathered} m=\frac{\Delta y}{\Delta x}\rightarrow slope \\ b\rightarrow y-intercept \end{gathered}[/tex]

Now, the last step is to find these unknowns from the given information:

Slope:

[tex]m=\frac{\Delta y}{\Delta x}=\frac{1-(-2)}{-2-(3)}=\frac{1+2}{-2-3}=\frac{3}{-5}=-\frac{3}{5}[/tex]

Y-intercept:

We will simply now put one of the points in our standard equation, and extract the y-intercept:

[tex]\begin{gathered} y(x)=mx+b \\ y(3)=-\frac{3}{5}(3)+b=-2 \\ \therefore\rightarrow \\ b=-2+\frac{9}{5}=\frac{-2\cdot5}{5}+\frac{9}{5}=\frac{-10+9}{5}=\frac{-1}{5} \\ y(x)=-\frac{3}{5}x-\frac{1}{5} \end{gathered}[/tex]