Let the score in his last game be
[tex]=x[/tex]The average of the three games is given as
[tex]=132[/tex]Step 1: The formula for average is
[tex]\text{average}=\text{ }\frac{\text{sum of the thre}e\text{ scores}}{3}[/tex]Step 2:Substituting the values of the three scores in the formula above, we will have
[tex]\begin{gathered} \text{average}=\text{ }\frac{\text{sum of the thre}e\text{ scores}}{3} \\ \text{average}=\frac{112+134+x}{3}=132 \end{gathered}[/tex]Step 3 : Cross multiply the equation below
[tex]\begin{gathered} \frac{112+134+x}{3}=\frac{132}{1} \\ \frac{246+x}{3}=\frac{132}{1} \\ 246+x=3\times132 \\ 246+x=396 \end{gathered}[/tex]Step 4: Subtract 246 from both sides
[tex]\begin{gathered} 246+x=396 \\ 246-246+x=396-246 \\ x=150 \end{gathered}[/tex]Hence,
John must score a point of 150 to ensure that his average is 132
Therefore,
Final answer = 150