Respuesta :

Answer:

x=-1, y=-8.

Explanation:

Given the system of equations:

[tex]\begin{gathered} 8x+y=-16 \\ -3x+y=-5 \end{gathered}[/tex]

To eliminate y, subtract:

[tex]\begin{gathered} 8x-(-3x)=-16-(-5) \\ 8x+3x=-16+5 \\ 11x=-11 \end{gathered}[/tex]

Divide both sides by 11:

[tex]\begin{gathered} \frac{11x}{11}=-\frac{11}{11} \\ x=-1 \end{gathered}[/tex]

Next, substitute the value of x into any of the equations to solve for y:

[tex]\begin{gathered} 8x+y=-16 \\ 8(-1)+y=-16 \\ -8+y=-16 \\ y=-16+8 \\ y=-8 \end{gathered}[/tex]

The solution to the system of equations is x=-1, y=-8.