Given:
The growth of the herd will be modelled by the equation.
[tex]P=\frac{1000}{1+9e^{-0.165t}}[/tex]Where P = Population of the herd
t = time in months
Required:
To find the population after t months.
Explanation:
Substitute t= 5 in the given equation.
[tex]\begin{gathered} P=\frac{1000}{1+9e^{-0.165(5)}} \\ P=\frac{1000}{1+9e^{-0.825}} \end{gathered}[/tex][tex]\begin{gathered} P=\frac{1000}{1+9(0.4382)} \\ P=\frac{1000}{1+9(0.4382)} \\ P=\frac{1000}{1+3.9438} \\ P=\frac{1000}{4.9438} \\ P=202.273 \\ P\approx202 \end{gathered}[/tex]Final Answer:
The population after 5 months is 202 animals expected.