A grain storage silo consists of a cylinder and a hemisphere. The diameter of the cylinder and the hemisphere is 20 feet. The cylinder is 150 feet tall.

GIven
the height of the cylinder is 150ft
diameter of hemisphere and the cylinder is 20ft
radius = d/2
then the height of hemisphere is equal to the radius of it
height of the hemisphere = 10
[tex]\begin{gathered} \text{radius}=\frac{20}{2} \\ r=10 \end{gathered}[/tex]volume of the silo = volume of the cylinder + volume of the hemisphere
first we find the volume of the cylinder
[tex]\begin{gathered} \text{volume of the cylinder = }\pi r^2h \\ =\pi(10)^2(150) \\ =\pi100(150) \\ =15000\pi \end{gathered}[/tex]now we find the volume of the hemisphere
[tex]\begin{gathered} \text{volume of hemisphere =}\frac{2}{3}\pi r^3 \\ =\frac{2}{3}\pi(10)^3 \\ =\frac{2}{3}\pi(1000) \end{gathered}[/tex]now we calculte the volume of the silo
[tex]\begin{gathered} \text{volume of silo=}15000\pi+\frac{2}{3}\pi(1000) \\ =\pi(15000+\frac{2}{3}(1000)) \\ =\pi(15000+\frac{2000}{3})_{} \\ =\pi(15000+666.6) \\ =\pi(15666.6) \\ =\frac{22}{7}(15666.6) \\ =49237.8cubicft \end{gathered}[/tex]