Step 1: Write the formula to be used
For a sum compounded annually
[tex]A=P(1+r)^n_{^{^{}}}[/tex]
Step 2: Find the rates for each bank
Super save
[tex]\begin{gathered} 1173.34=1000(1+r)^6 \\ (1+r)^6=\frac{1173.34}{1000}=1.117334 \\ (1+r)^6=1.117334 \\ 1+r=\sqrt[6]{1.117334} \\ 1+r=1.01866 \\ r=1.01866-1 \\ r=0.01866 \\ r=1.867\text{ \%} \end{gathered}[/tex]
For star Financial
[tex]\begin{gathered} 2684.35=2500(1+r)^3 \\ (1+r)^3=\frac{2684.35}{3500}=1.07374 \\ (1+r)=\sqrt[3]{1.07374} \\ 1+r=1.02400 \\ r=1.02400-1=0.02400 \\ r=2.4\text{ \%} \end{gathered}[/tex]
For Better Bank
[tex]\begin{gathered} 4525.63=4000(1+r)^5 \\ (1+r)^5=\frac{4525.63}{4000} \\ (1+r)^5=1.1314 \\ 1+r=\sqrt[5]{1.1314} \\ 1+r=1.025 \\ r=1.025-1 \\ r=0.025 \\ r=2.5\text{ \%} \end{gathered}[/tex]
Based on the interest rates, Better Bank has the highest interest rate
For the Better Bank,
The rates,
r= 2.5%
P=$5000
where n is less than or equal to 10 years
We will use the equation
[tex]A=P(1+r)^n_{}[/tex]
To plot the graph
[tex]A=5000(1.025)^n_{}[/tex]