Respuesta :

From the problem, we have :

[tex]\cos ^2x[/tex]

Note that it is the same as :

[tex]\cos ^2x=(\cos x)^2[/tex]

And using the general derivative formula :

[tex]\frac{d(u^n)}{dx}=nu^{n-1}du[/tex]

The exponent will be multiplied to u raised to n-1 and the derivative of u.

Going back to the problem :

[tex]\frac{d(\cos x)^2}{dx}=2\cos x\cdot d(\cos x)[/tex]

Note that the derivative of cos x is -sin x

[tex]\begin{gathered} 2\cos x\cdot d(\cos x)=2\cos x(-\sin x) \\ \Rightarrow-2\cos x\sin x \end{gathered}[/tex]

Take note also of the identity :

[tex]\sin 2x=2\sin x\cos x[/tex]

So the expression will be :

[tex]-2\sin x\cos x=-\sin 2x[/tex]

The answer is -sin 2x