14. The radius of a smaller circle is half the length of the radius of a larger circle.The area of the larger circle is 113.04 square inches. What is the approximate areaof the smaller circle?

Respuesta :

Answer:

The approximate area of the smaller circle is;

[tex]28.26\text{ }in^2[/tex]

Explanation:

Given that the radius of a smaller circle is half the length of the radius of a larger circle.

Let R and r represent the radius of the larger and smaller circle respectively;

[tex]R=2r[/tex]

The area of the smaller circle will be;

[tex]A_s=\pi r^2[/tex]

while the area of the larger circle will be;

[tex]A_l=\pi R^2[/tex]

substituting R = 2r;

[tex]\begin{gathered} A_l=\pi R^2 \\ A_l=\pi(2r)^2 \\ A_l=\pi(2^2r^2) \\ A_l=4\pi r^2 \end{gathered}[/tex]

We can now replace the area of the smaller circle;

[tex]\begin{gathered} A_l=4\pi r^2 \\ \text{And we know that;} \\ A_s=\pi r^2 \\ so; \\ A_l=4A_s \\ \therefore \\ A_s=\frac{A_l}{4} \end{gathered}[/tex]

Given in the question;

The area of the larger circle is 113.04 square inches.

[tex]A_l=113.04\text{ }in^2[/tex]

Substituting the area of the larger circle;

[tex]\begin{gathered} A_s=\frac{A_l}{4} \\ A_s=\frac{113.04}{4} \\ A_s=28.26\text{ }in^2 \end{gathered}[/tex]

Therefore, the approximate area of the smaller circle is;

[tex]28.26\text{ }in^2[/tex]