Respuesta :

As given by the question

There are given that the expression

[tex]6\sqrt[]{75x^9y^{12}z}[/tex]

Now,

Simplify the above expression

First, apply the radical rule;

[tex]\sqrt[]{ab}=\sqrt[]{a}\sqrt[]{b}[/tex]

Then,

From the given expression

[tex]6\sqrt[]{75x^9y^{12}z}=6\sqrt[]{75}\sqrt[]{x^9y^{12}z}^{}[/tex]

Then,

[tex]6\sqrt[]{75}\sqrt[]{x^9y^{12}z}^{}=6\sqrt[]{75}\sqrt[]{x^9}\sqrt[]{y^{12}z}[/tex]

Now,

[tex]6\sqrt[]{75}\sqrt[]{x^9}\sqrt[]{y^{12}z}=6\times5\sqrt[]{3}\sqrt[]{x^9}\sqrt[]{y^{12}}\text{ }\sqrt[]{z}[/tex]

Then,

Simplify the above equation again

So,

[tex]\begin{gathered} 6\times5\sqrt[]{3}\sqrt[]{x^9}\sqrt[]{y^{12}}\text{ }\sqrt[]{z}=6\times5\sqrt[]{3\times}^{}\sqrt[]{x^8\times x}\times\sqrt[]{y^{12}}\sqrt[]{z} \\ =6\times5\sqrt[]{3\times}x^4\sqrt[]{x}\times\sqrt[]{y^{12}}\sqrt[]{z} \end{gathered}[/tex]

Then,

Simplify the y terms in the above result

So,

[tex]\begin{gathered} 6\times5\sqrt[]{3\times}x^4\sqrt[]{x}\times\sqrt[]{y^{12}}\sqrt[]{z}=6\times5\sqrt[]{3\times}x^4\sqrt[]{x}\times y^6\sqrt[]{z} \\ \end{gathered}[/tex]

Now,

Multiply 6 with 5 and written in the standard form

So,

[tex]6\times5\sqrt[]{3\times}x^4\sqrt[]{x}\times y^6\sqrt[]{z}=30x^4y^6\sqrt[]{x}\sqrt[]{z}[/tex]

Hence, the value of the given expression is shown below:

[tex]30\sqrt[]{3}x^4y^6\sqrt[]{x}\sqrt[]{z}[/tex]