A (2 , 6)
B (4 , 2)
Reflection over x-axis general rule:
[tex]P(x,y)\rightarrow P^{\prime}(x,-y)[/tex]
Dilation general rule:
[tex]P(x,y)\rightarrow P^{\prime}(kx,ky)[/tex]
k is the scale factor
--------------------------
If the line is reflected first:
[tex]\begin{gathered} A(2,-6)\rightarrow A^{\prime}(2,6) \\ B(4,2)\rightarrow B^{\prime}(4,-2) \end{gathered}[/tex]
And then dilated by 1/2:
[tex]\begin{gathered} \\ A^{\prime}(2,6)\rightarrow A^{\doubleprime}(1,3) \\ \\ \\ B^{\prime}(4,-2)\rightarrow B^{\doubleprime}(2,-1) \end{gathered}[/tex]
---------------------------
If the line is dilated by 1/2:
[tex]\begin{gathered} A(2,-6)\rightarrow A^{\prime}(1,-3) \\ \\ B(4,2)\rightarrow B^{\prime}(2,1) \end{gathered}[/tex]
And then reflected in the x-axis:
[tex]\begin{gathered} A^{\prime}(1,-3)\rightarrow A^{\doubleprime}(1,3) \\ B^{\prime}(2,1)\rightarrow B^{\doubleprime}(2,-1) \end{gathered}[/tex]
-------------
Then, the image A''B'' is the same in both cases