throu 4. (h) incli Use the point-slope form to find the equation of each alti a triangle is the perpendicular drawn from any vertex to (a) A(1,-2), B(3,4), C(-2,6)

Respuesta :

The graph below shows the triangle ABC

We use points C(-2,6) and B(3,4) to find the slope of CB

[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{4-6}{3-(-2)}=\frac{-2}{3+2}=-\frac{2}{5}[/tex]

Now, we find the perpendicular slope to CB.

[tex]\begin{gathered} m\cdot m_1=-1 \\ m\cdot(-\frac{2}{5})=-1 \\ m=\frac{5}{2} \end{gathered}[/tex]

The altitude has to pass through point A(1, -2). Let's use the point-slope formula to find the equation

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-(-2)=\frac{5}{2}(x-1) \\ y+2=\frac{5}{2}x-\frac{5}{2} \\ y=\frac{5}{2}x-\frac{5}{2}-2 \\ y=\frac{5}{2}x+\frac{-5-4}{2} \\ y=\frac{5}{2}x-\frac{9}{2} \end{gathered}[/tex]

Hence, the equation of the altitude is

[tex]y=\frac{5}{2}x-\frac{9}{2}[/tex]

This altitude is perpendicular to the side CB.

Ver imagen YasnaU129840