Find the missing parts of the triangle.B = 11.7°b= 8.75a= 10.79If necessary round angles to the nearest tenth and side lengths to the nearest hundredth.Option 1: A=14.48°, C=153.82°, c=19.04Option 2: A=165.52°, C=2.78°, c=2.09Option 3: no such triangleOption 4: A1= 14.48°, C1= 153.82°, c1=19.04;A2=165.52°, C2=2.78°, c2=2.09

Respuesta :

Let's use the law of sines in order to find the angle A:

[tex]\begin{gathered} \frac{a}{sin(A)}=\frac{b}{sin(B)} \\ so: \\ \frac{10.79}{sin(A)}=\frac{8.75}{sin(11.7)} \end{gathered}[/tex]

Solve for A:

[tex]\begin{gathered} A=sin^{-1}(\frac{10.79\cdot sin(11.7)}{8.75}) \\ A\approx14.48 \end{gathered}[/tex]

Now, we can find the angle C using the triangle sum theorem:

[tex]\begin{gathered} A+B+C=180 \\ 14.48+11.7+C=180 \\ 26.18+C=180 \end{gathered}[/tex]

Solve for C:

[tex]\begin{gathered} C=180-26.18 \\ C\approx153.82 \end{gathered}[/tex]

Finally, let's find c using the law of sines again:

[tex]\begin{gathered} \frac{b}{sin(B)}=\frac{c}{sin(C)} \\ so: \\ \frac{8.75}{sin(11.7)}=\frac{c}{sin(153.82)} \end{gathered}[/tex]

Solve for c:

[tex]\begin{gathered} c=\frac{8.75\cdot sin(153.82)}{sin(11.7)} \\ c\approx19.04 \end{gathered}[/tex]

Answer:

A = 14.48

C = 153.82

c = 19.04

Ver imagen AshlynneX268759