Let 'n' represents the number of books.
Let 'F' represents the one-time fixed cost
Let 'V' represents the variable cost
Let 'S' represents sales cost
Let's write out the equation
[tex]\begin{gathered} \text{where F=\$60,480} \\ V=\text{ \$10.75}\times n=\text{ \$10.75n} \\ S=\text{ \$25.75}\times n=\text{ \$25.75n} \end{gathered}[/tex]
[tex]\begin{gathered} F+\text{ V=S} \\ \text{ \$60,480+\$10}.75n=\text{ \$25.75n} \\ \text{ \$60,480=\$25.75n-\$10.75n} \\ \end{gathered}[/tex][tex]\begin{gathered} \text{ \$60,480=\$15}n \\ \text{Divide both sides by \$15} \\ \frac{\text{ \$60,480}}{\text{ \$15}}=\text{ }\frac{\text{\$15n}}{\text{ \$15}} \\ 4032=n \end{gathered}[/tex]
Hence, the number of books that the producer must produce and sell so that the production costs will be equal to the money from sales is 4032books.