The specific heat capacity of a substance is the amount of energy required to raise the temperature of 1g of the substance by 1K.
[tex]\begin{gathered} q=mc\Delta T \\ q:energy\text{ }(J)=x \\ m:mass\text{ }(g)=5.00g \\ c:specific\text{ }heat\text{ }capacity\text{ }(Jg^{-1}K^{-1}) \\ \Delta T:change\text{ }in\text{ }temperature\text{ }(K) \\ \Delta T:(final\text{ }temperature-initial\text{ }temperature) \end{gathered}[/tex]Calculating the change in temperature:
[tex]\Delta T:(273.15K+36.5\degree C)-(273.15K+15\degree C)=21.5K[/tex]By substituting what we are given into the equation to solve for the unknow x we have;
[tex]\begin{gathered} q=5.00g\times4.18Jg^{-1}K^{-1}\times21.5K \\ q=+449.35J \end{gathered}[/tex]Answer: Energy needed is 449.35J