Respuesta :

Given the function:

[tex]B(x)=20x+25[/tex]

Let's find the value of each expression:

• (a). ,B(6)

To solve for B(6), substitute 6 for x and solve for B(6)

[tex]\begin{gathered} B(6)=20(6)+25 \\ \\ B(6)=120+25 \\ \\ B(6)=145 \end{gathered}[/tex]

• b. B(2.75)

Substitute 2.75 for x and solve for B(2.75)

[tex]\begin{gathered} B(2.75)=20(2.75)+25 \\ \\ B(2.75)=55+25 \\ \\ B(2.75)=80 \end{gathered}[/tex]

• c. ,B(1.482)

Substitute 1.482 for x and solve for B(1.482)

[tex]\begin{gathered} B(1.482)=20(1.482)+25 \\ \\ B(1.482)=29.64+25 \\ \\ B(1.482)=54.64 \end{gathered}[/tex]

• d. B(x) = 93

Subsitute 93 for B(x) and solve for x:

[tex]\begin{gathered} 93=20x+25 \\ \\ 20x=93-25 \\ \\ 20x=68 \\ \\ \text{Divide both sides by 20:} \\ \frac{20x}{20}=\frac{68}{20} \\ \\ x=3.4 \end{gathered}[/tex]

• e. B(x) = 42.1

Substitute 42.1 for B(x) and solve for x

[tex]\begin{gathered} 42.1=20x+25 \\ \\ 20x=42.1-25 \\ \\ 20x=17.1 \\ \\ \text{Divide both sides by 20:} \\ \frac{20x}{20}=\frac{17.1}{20} \\ \\ x=0.855 \end{gathered}[/tex]

ANSWER:

• (a). 145

,

• (b). 80

,

• (c). 54.64

,

• (d). 3.4

,

• (e). 0.855