The given transformation is
[tex](x,y)\rightarrow(\frac{3}{4}x,\frac{3}{4}y)[/tex]
The given points are-
[tex]A(-1,2),B(4,22),C(4,-1),D(-1,-1)[/tex]
Now, we apply the dilation to each point. We just have to multiply each coordinate with the scale factor 3/4.
[tex]A^{\prime}(-1\cdot\frac{3}{4},2\cdot\frac{3}{4})\rightarrow A^{\prime}(-\frac{3}{4},\frac{3}{2})[/tex][tex]B^{\prime}(4\cdot\frac{3}{4},22\cdot\frac{3}{4})\rightarrow B^{\prime}(3,\frac{33}{2})[/tex][tex]C^{\prime}(4\cdot\frac{3}{4},-1\cdot\frac{3}{4})\rightarrow C^{\prime}(3,-\frac{3}{4})[/tex][tex]D^{\prime}(-1\cdot\frac{3}{4},-1\cdot\frac{3}{4})\rightarrow D^{\prime}(-\frac{3}{4},-\frac{3}{4})[/tex]
As you can observe, the new coordinates are less than the originals, this means the image is smaller than the pre-image.
Therefore, the right answer is B.