identiality StatAdapt Web SerSimplify.6V x3 + 8xVxSTEP 1: Write x3 as the product of the square root of a perfect square and Vx.ovJ VX + 8xVX + 8xVxSTEP 2: Simplify x26X + 8xVxSTEP 3: Use the Distributive Property.(6x +veSTEP 4: AddAdditional MaterialseBook

Respuesta :

Let's follow the steps given.

First it asks to rewrite the square root. So:

[tex]\sqrt[]{x^3}=\sqrt[]{x^2\cdot x}=\sqrt[]{x^2}\cdot\sqrt[]{x}[/tex]

Thus:

[tex]6\sqrt[]{x^3}+8x\sqrt[]{x}=6\sqrt[]{x^2}\sqrt[]{x}+8x\sqrt[]{x}[/tex]

Then, it asks to simplify the square root:

[tex]\sqrt[]{x^2}=x[/tex]

Thus:

[tex]6\sqrt[]{x^2}\sqrt[]{x}+8x\sqrt[]{x}=6x\sqrt[]{x}+8x\sqrt[]{x}[/tex]

Now, we use the distributive property backwards:

[tex]6x\sqrt[]{x}+8x\sqrt[]{x}=(6x+8x)\sqrt[]{x}[/tex]

Finally, we add what is inside of the parenthesis:

[tex](6x+8x)\sqrt[]{x}=14x\sqrt[]{x}[/tex]