Respuesta :

The distance, d, between two points (x1, y1) and (x2, y2) is calculated as follows:

[tex]d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Substituting with points (5/2, -1) and (-3/2, 4), we get:

[tex]\begin{gathered} d=\sqrt[]{(-\frac{3}{2}-\frac{5}{2})^2+(4-(-1))^2} \\ d=\sqrt[]{(-4)^2+5^2} \\ d=\sqrt[]{16+25} \\ d=\sqrt[]{41} \\ d\approx6.4 \end{gathered}[/tex]

The coordinates of the midpoint between two points (xm, ym) are computed as follows:

[tex](x_m,y_m)=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Substituting with points (5/2, -1) and (-3/2, 4), we get:

[tex]\begin{gathered} (x_m,y_m)=(\frac{\frac{5}{2}-\frac{3}{2}}{2},\frac{-1+4}{2}) \\ (x_m,y_m)=(\frac{1}{2},\frac{3}{2}) \end{gathered}[/tex]