13. The area of a rectangle is given by the expression 6x² + x - 1. If the width of the rectangle is 2 units, then interms of x , what is the simplified, expanded expression for the perimeter of this rectangle?

Respuesta :

We have the following:

[tex]\begin{gathered} A=w\cdot l \\ A=6x^{2}+x-1 \\ w=2 \end{gathered}[/tex]

to calculate the length:

[tex]\begin{gathered} l=\frac{A}{w} \\ l=\frac{6x^{2}+x-1}{2} \\ l=\frac{6x^2}{2}+\frac{x}{2}-\frac{1}{2} \\ l=3x^2+\frac{x}{2}-\frac{1}{2} \end{gathered}[/tex]

the perimeter is:

[tex]p=2\cdot w+2\cdot l[/tex]

replacing:

expanded expression:

[tex]\begin{gathered} p=2\cdot2+2\cdot(3x^2+\frac{x}{2}-\frac{1}{2}) \\ p=4+2\cdot(3x^2+\frac{x}{2}-\frac{1}{2}) \end{gathered}[/tex]

simplifed expression:

[tex]\begin{gathered} p=2\cdot2+2\cdot(3x^2+\frac{x}{2}-\frac{1}{2}) \\ p=4+2\cdot3\cdot x^2+2\cdot\frac{x}{2}-2\cdot\frac{1}{2} \\ p=4+6x^2+x-1 \\ p=6x^2+x+3 \end{gathered}[/tex]