Let's draw a picture of our box:
So we need to find the area of the 6 rectangular faces, which can be grouped in 3 pairs:
Then, for rectangle 1, the area is
[tex]\begin{gathered} A_1=\text{ base}\times heigth \\ A_1=10\times8 \\ A_1=80cm^2 \end{gathered}[/tex]Simlarly, for rectangle 2, we have
[tex]\begin{gathered} A_2=10\times3 \\ A_2=30cm^2 \end{gathered}[/tex]and for rectangle 3, we get
[tex]\begin{gathered} A_3=3\times8 \\ A_3=24cm^2 \end{gathered}[/tex]Therefore, the surface area (S) of the box is given as
[tex]S=2\times A_1+2\times A_2+2\times A_3[/tex]then, by substituting our above result into the last equation, we have
[tex]S=2\times80+2\times30+2\times24[/tex]which gives
[tex]\begin{gathered} S=160+60+48 \\ S=268cm^2 \end{gathered}[/tex]Therefore, the answer is: 268 square centimeters of wrapping paper. (Option 3 from top to bottom)