SOLUTION
Consider the table given below.
From the table above, the random value x of x are
[tex]X(x)=-4,\text{ -2 and 4}[/tex]
To obtain the probability distribution for each value of x, we use the probability formula where,
[tex]\text{Total outcome=8}[/tex]
For X(x)= -4, we have
[tex]\begin{gathered} -4\text{ occurs thr}ee\text{ times, } \\ P_X(x)=\frac{\text{ number of occurence}}{Total\text{ outcome }} \end{gathered}[/tex]
Then
[tex]P_X(-4)=\frac{3}{8}[/tex]
Also, for X(x)= -2, from the table we have
[tex]\begin{gathered} -2\text{ occurs four times } \\ \text{Hence } \\ P_X(-2)=\frac{\text{ Number of occurence}}{total\text{ number}} \\ \\ \end{gathered}[/tex]
Then
[tex]P_X(-2)=\frac{4}{8}=\frac{1}{2}[/tex]
Similarly, value X(x)=4
4 occur once, hence
[tex]\begin{gathered} P_x(x)=\text{ }\frac{\text{number of occurence}}{total\text{ outcome }} \\ \text{Then} \\ P_x(x)=\frac{1}{8} \end{gathered}[/tex]
The solution is given in the image below: