Respuesta :

Answer:

Explanation:

The given equation is:

[tex]\frac{1}{2}mv^2+mgh=E[/tex]

Note that:

The mass m is constant

Total energy E is constant

The derivative of a constant is zero

g = 9.81 m/s^2

dh/dt = v

Compute d/dt of both sides

[tex]\begin{gathered} \frac{d}{dt}(\frac{1}{2}mv^2)+\frac{d}{dt}(mgh)=\frac{dE}{dt} \\ \\ \frac{1}{2}m\frac{d}{dt}(v^2)+mg\frac{dh}{dt}=0 \\ \\ \frac{1}{2}(m)(2v)\frac{dv}{dt}+mgv=0 \\ \\ mv\frac{dv}{dt}+mgv=0 \\ \\ mv\frac{dv}{dt}+9.81mv=0 \\ \\ mv(\frac{dv}{dt}+9.81)=0 \\ \\ \frac{dv}{dt}+9.81=0 \\ \\ \frac{dv}{dt}=-9.81\text{ m/s}^2 \end{gathered}[/tex]