Respuesta :
he will need 171 ounces of solution A
he will need 9 ounces of solution B
Explanation
Step 1
Let
x represents the number of ounces of solution A in the mixture
y represents the number of ounces of solution B in the mixture
then
[tex]x+y=180\text{ Equation(1)}[/tex]Also
[tex]\begin{gathered} \text{salt in the mixture from solution A= x}\cdot0.65 \\ \text{salt in the mixture from solution B=y}\cdot0.9 \\ so \\ \text{salt in the mixture from solution A+salt in the mixture from solution B=180}\cdot0.7 \\ \text{replacing} \\ 0.65x+0.9y=180\cdot0.7 \\ 0.65x+0.9y=126\text{ Equation (2)} \end{gathered}[/tex]Step 2
find x and y using equation (1) and equation(2)
i)isolate x in equation (1)
[tex]\begin{gathered} x+y=180\text{ Equation(1)} \\ x+y=180 \\ \text{subtract y in both sides} \\ x+y-y=180-y \\ x=180-y\text{ Equation(3)} \end{gathered}[/tex]ii)replace equation (3) into equation (2)
[tex]\begin{gathered} 0.65x+0.9y=126\text{ Equation (2)} \\ 0.65x+0.9y=126\text{ } \\ 0.65(180-y)+0.9y=126 \\ 117-0.65y+0.9y=126 \\ 0.25y+117=126 \\ \text{subtract 117 in both sides} \\ 0.25y+117-117=126-117 \\ 0.25y=9 \\ y=\frac{9}{0.25} \\ y=9 \end{gathered}[/tex]so, he will need 9 ounces of solution B
Step 3
finally, replace the value of y =9 in equation (1) to find x
[tex]\begin{gathered} x+y=180 \\ x+9=180 \\ x=180-9 \\ x=171 \end{gathered}[/tex]he will need 171 ounces of solution A
