Given:
The equation of the line is y = ax.
The coordinates are given as,
[tex]\begin{gathered} (2,4) \\ (-2,-4) \end{gathered}[/tex]The objective is to find the value of a using the coordinates.
Explanation:
The general formula of a straight line is,
[tex]y=mx+b\text{ . . . . . (1)}[/tex]Here, m represents the slope of the straight line and b represents the y-intercept.
Similarly, the general formula to find the value of slope m is,
[tex]m=\frac{y_2-y_1}{x_2-x_1}\text{ . . . . . (2)}[/tex]To find a:
By comparing the given equation with the equation (1),
[tex]m=a[/tex]Consider the given coordinates as,
[tex]\begin{gathered} (x_1,y_1)=(2,4) \\ (x_2,y_2)=(-2,-4) \end{gathered}[/tex]To find the value of a substitute the given coordinates in equation (2).
[tex]undefined[/tex]