First drop down answer choices A. pi/4 B. pi/ 2 C. 4pi D. piSecond drop down answer choices A. pi/4 B. pi/ 2 C. 4pi D. piThird drop down answer choices A. Larger B. Smaller Forth drop down answer choices A. Larger B. Smaller

Let 'a' represent the ratio of the arc length to its radius.
Given for the first circle,
[tex]\begin{gathered} \text{Arc length=4pi} \\ \text{Radius}=16\text{units} \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} a_1=\frac{4\pi}{16}=\frac{\pi}{4} \\ \therefore a_1=\frac{\pi}{4} \end{gathered}[/tex]Given for the second circle,
[tex]\begin{gathered} \text{Arc length=}5\pi \\ \text{Radius}=5units \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} a_2=\frac{5\pi}{5}=\pi \\ \therefore a_2=\pi \end{gathered}[/tex]Hence,
[tex]\begin{gathered} \pi>\frac{\pi}{4} \\ \therefore a_2>a_1 \end{gathered}[/tex]Final answers
First drop down
[tex]\frac{\pi}{4}\text{ (OPTION }A)[/tex]Second drop down
[tex]\pi\text{ (OPTION D)}[/tex]Third drop down
[tex]Larger\text{ (OPTION A)}[/tex]Fourth drop down
[tex]Larger\text{ (OPTION A)}[/tex]