First drop down answer choices A. pi/4 B. pi/ 2 C. 4pi D. piSecond drop down answer choices A. pi/4 B. pi/ 2 C. 4pi D. piThird drop down answer choices A. Larger B. Smaller Forth drop down answer choices A. Larger B. Smaller

First drop down answer choices A pi4 B pi 2 C 4pi D piSecond drop down answer choices A pi4 B pi 2 C 4pi D piThird drop down answer choices A Larger B Smaller F class=

Respuesta :

Let 'a' represent the ratio of the arc length to its radius.

Given for the first circle,

[tex]\begin{gathered} \text{Arc length=4pi} \\ \text{Radius}=16\text{units} \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} a_1=\frac{4\pi}{16}=\frac{\pi}{4} \\ \therefore a_1=\frac{\pi}{4} \end{gathered}[/tex]

Given for the second circle,

[tex]\begin{gathered} \text{Arc length=}5\pi \\ \text{Radius}=5units \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} a_2=\frac{5\pi}{5}=\pi \\ \therefore a_2=\pi \end{gathered}[/tex]

Hence,

[tex]\begin{gathered} \pi>\frac{\pi}{4} \\ \therefore a_2>a_1 \end{gathered}[/tex]

Final answers

First drop down

[tex]\frac{\pi}{4}\text{ (OPTION }A)[/tex]

Second drop down

[tex]\pi\text{ (OPTION D)}[/tex]

Third drop down

[tex]Larger\text{ (OPTION A)}[/tex]

Fourth drop down

[tex]Larger\text{ (OPTION A)}[/tex]