Respuesta :

The expression given is,

[tex]\frac{7s}{s^2-14s+49}-\frac{49}{s^2-14s+49}[/tex]

Apply the fraction rule:

[tex]\begin{gathered} \frac{a}{c}-\frac{b}{c}=\frac{a-b}{c} \\ =\frac{7s-49}{s^2-14s+49} \end{gathered}[/tex]

Factor 7s-49: 7(s-7)

[tex]=\frac{7\left(s-7\right)}{s^2-14s+49}[/tex][tex]\begin{gathered} Factor: \\ s^2-14s+49=\left(s-7\right)^2 \end{gathered}[/tex]

Therefore,

[tex]\frac{7\left(s-7\right)}{s^2-14s+49}=\frac{7\left(s-7\right)}{\left(s-7\right)^2}[/tex]

Apply exponent rule:

[tex]\begin{gathered} \left(s-7\right)^2=\left(s-7\right)\left(s-7\right) \\ \frac{7\left(s-7\right)}{\left(s-7\right)^2}=\frac{7\left(s-7\right)}{\left(s-7\right)\left(s-7\right)} \end{gathered}[/tex]

Cancel out factor: s-7

[tex]\frac{7}{s-7}[/tex]

Hence, the answer is

[tex]\frac{7}{s-7}[/tex]