Respuesta :

we have the function

[tex]s(t)=-16t^2+20t+2[/tex]

this function represents a vertical parabola open downward

the vertex represents a maximum

Convert the given function to vertex form

so

y=a(x-h)^2+k

where

(h,k) is the vertex

step 1

Factor of -16

[tex]s(t)=-16(t^2-\frac{20t}{16})+2[/tex]

step 2

Complete the square

[tex]s(t)=-16(t^2-\frac{20t}{16}+\frac{20^2}{32^2}-\frac{20^2}{32^2})+2[/tex][tex]s(t)=-16(t^2-\frac{20t}{16}+\frac{20^2}{32^2})+2+\frac{16\cdot20^2}{32^2}[/tex]

simplify

[tex]s(t)=-16(t^2-\frac{20t}{16}+\frac{20^2}{32^2})+2+\frac{25}{4}[/tex][tex]s(t)=-16(t^2-\frac{20t}{16}+\frac{20^2}{32^2})+\frac{33}{4}[/tex]

Rewrite as perfect squares

[tex]s(t)=-16(t^{}-\frac{20}{32})+\frac{33}{4}[/tex]

simplify

[tex]s(t)=-16(t^{}-\frac{5}{8})+\frac{33}{4}[/tex]

the vertex is the point (5/8,33/4)

therefore

the maximum height is the y-coordinate of the vertex

maximum height is 33/4=8.25 ft