find the first four and stated term given the arithmetic sequence, with a1 as the 1st term.

To find the first four terms and stated term you substitute the n in each equation sequence for: 1, 2 , 3, 4 and stated term:
5)
[tex]a_n=13.3+5.9n[/tex]First term: n=1
[tex]a_1=13.3+5.9(1)=19.2[/tex]Second term: n=2
[tex]a_2=13.3+5.9(2)=25.1[/tex]Third term: n=3
[tex]a_3=13.3+5.9(3)=31[/tex]Fourth term: n=4
[tex]a_4=13.3+5.9(4)=36.9[/tex]11th term: n=11
[tex]a_{11}=13.3+5.9(11)=78.2[/tex]Then, the first four terms are: 19.2, 25.1, 31, 36.9 and the 11th term is 78.26)
[tex]a_n=12.4+5.5n[/tex]First term: n=1
[tex]a_1=12.4+5.5(1)=17.9[/tex]Second term: n=2
[tex]a_2=12.4+5.5(2)=23.4[/tex]Third term: n=3
[tex]a_3=12.4+5.5(3)=28.9[/tex]Fourth term: n=4
[tex]a_4=12.4+5.5(4)=34.4[/tex]16th term: n=16
[tex]a_{16}=12.4+5.5(16)=100.4[/tex]Then, the first four terms are: 17.9, 223.4, 28.9, 34.4 and the 16th term is 100.47)
[tex]a_n=3+6n[/tex]First term: n=1
[tex]a_1=3+6(1)=9[/tex]Second term: n=2
[tex]a_2=3+6(2)=15[/tex]Third term: n=3
[tex]a_3=3+6(3)=21[/tex]Fourth term: n=4
[tex]a_4=3+6(4)=27[/tex]14th term: n=14
[tex]a_{14}=3+6(14)=87[/tex]Then, the first four terms are: 9, 15, 21, 27, and the 14th term is 878)
[tex]a_n=24.5+5.0n[/tex]First term: n=1
[tex]a_1=24.5+5.0(1)=29.5[/tex]Second term: n=2
[tex]a_2=24.5+5.0(2)=34.5[/tex]Third term: n=3
[tex]a_3=24.5+5.0(3)=39.5[/tex]Fourth term: n=4
[tex]a_4=24.5+5.0(4)=44.5[/tex]19th term: n=19
[tex]a_{19}=24.5+5.0(19)=119.5[/tex]Then, the first four terms are: 29.5, 34.5, 39.5, 44.5, and the 19th term is 119.5