Respuesta :

Answer

The operation is in base 7.

Explanation

We are asked to determine in what base

[tex]12_b+26_b=41_b[/tex]

To do this, we just convert all of these to base 10

[tex]\begin{gathered} 12_b=(1\times b^1)+(2\times b^0)=(1\times b)+(2\times1)=(b+2) \\ 26_b=(2\times b^1)+(6\times b^0)=(2\times b)+(6\times1)=(2b+6) \\ 41_b=(4\times b^1)+(1\times b^0)=(4\times b)+(1\times1)=(4b+1) \end{gathered}[/tex]

The equation can then be written in base 10 as

(b + 2) + (2b + 6) = (4b + 1)

b + 2 + 2b + 6 = 4b + 1

b + 2b + 2 + 6 = 4b + 1

3b + 8 = 4b + 1

We can rewrite this as

4b + 1 = 3b + 8

4b - 3b = 8 - 1

b = 7

Hope this Helps!!!