What is the inverse of f(x) = (x - 5)^2 for x ≥ 5 where function g is the inverse of function f?A) g(x) = ✓x - 5, x ≥ 0B) g(x) = ✓x - 5, x ≥ 5C) g(x) = ✓x + 5, x ≥ 0D) g(x) = ✓x + 5, x ≥ -5

The given function is
[tex]f(x)=(x-5)^2,x\ge5[/tex]To find its inverse g(x) we will do these steps
1. Replace f(x) by y
[tex]y=(x-5)^2[/tex]2. Switch x and y
[tex]x=(y-5)^2[/tex]3. Solve to find y
Take a square root for both sides
[tex]\begin{gathered} \sqrt[]{x}=\sqrt[]{(y-5)^2} \\ \sqrt[]{x}=y-5 \end{gathered}[/tex]Add 5 to both sides
[tex]\begin{gathered} \sqrt[]{x}+5=y-5+5 \\ \sqrt[]{x}+5=y \end{gathered}[/tex]4. Replace y by g(x)
[tex]g(x)=\sqrt[]{x}+5,x\ge0[/tex]The answer is the 3rd choice