A.
T find f(14) we simply plug in the value in the formula:
[tex]\begin{gathered} f(x)=10x+12 \\ \rightarrow f(14)=10(14)+12 \\ \Rightarrow f(14)=152 \end{gathered}[/tex]B.
To find the inverse, we switch x and y, and then clear y :
[tex]\begin{gathered} y=10x+12\rightarrow x=10y+12\rightarrow x-12=10y \\ \\ \rightarrow y=\frac{x-12}{10} \\ \\ \Rightarrow f^{-1}(x)=\frac{x-12}{10} \end{gathered}[/tex]C.
We plug in -9 in the formula of the inverse of f(x):
[tex]\begin{gathered} f^{-1}(x)=\frac{x-12}{10} \\ \\ \rightarrow f^{-1}(-9)=\frac{-9-12}{10} \\ \\ \Rightarrow f^{-1}(x)=-\frac{21}{10} \end{gathered}[/tex]