Respuesta :

System of equations:

• Equation 1

[tex]5x+2y=-7[/tex]

• Equation 2

[tex]5x+3y=2[/tex]

Procedure

This system is easier if we solve it using the elimination method, in which we multiply the first equation times minus one, add both equations to eliminate the x variable, and solve for y.

0. Multiplying Equation 1 times minus 1.

[tex]-1\cdot(5x+2y=-7)[/tex][tex]-5x-2y=7[/tex]

2. Adding both equations:

[tex]\begin{gathered} -5x-2y=7 \\ +(5x+3y=2) \\ --------- \\ 0+1\cdot y=9 \end{gathered}[/tex]

Then:

[tex]y=9[/tex]

3. Finally, substituting this value in any equation and solving for x:

[tex]5x+2\cdot9=-7[/tex][tex]5x+18=-7[/tex][tex]5x=-7-18[/tex][tex]x=-\frac{25}{5}=-5[/tex]

Answer: y = 9 and x = -5.