ANSWER:
58° and 122°
STEP-BY-STEP EXPLANATION:
The sum of both angles is equal to 180°, therefore, we can establish the following equation:
[tex]9y-5+19y-11=180[/tex]We solve for y, just like this:
[tex]\begin{gathered} 28y=180+5+11 \\ y=\frac{196}{28} \\ y=7 \end{gathered}[/tex]Therefore, we calculate the value of each angle, knowing the value of y:
[tex]\begin{gathered} \alpha=9\cdot7-5=58\text{\degree} \\ \beta=19\cdot7-11=122\text{\degree} \end{gathered}[/tex]Therefore, the angles measure 58° and 122°