How do I do B? Solve for f(x)=0? I think I can complete the square but that is the question in part C. Is there another way to solve f(x)=0 besides completing the square?

How do I do B Solve for fx0 I think I can complete the square but that is the question in part C Is there another way to solve fx0 besides completing the square class=

Respuesta :

18.

[tex]f(x)=6x^2-3x-5[/tex]

a)

C)

[tex]\begin{gathered} f(x)=0 \\ 6x^2-3x-5=0 \end{gathered}[/tex]

Divide both sides by 6:

[tex]x^2-\frac{x}{2}-\frac{5}{6}=0[/tex]

Add 5/6 to both sides:

[tex]\begin{gathered} x^2-\frac{x}{2}=\frac{5}{6} \\ \end{gathered}[/tex]

Add 1/16 to both sides:

[tex]x^2-\frac{x}{2}+\frac{1}{16}=\frac{43}{48}[/tex]

Write the left hand side as a square:

[tex](x-\frac{1}{4})^2=\frac{43}{48}[/tex]

Take the square root of both sides:

[tex]\begin{gathered} x-\frac{1}{4}=\pm\frac{\sqrt[]{\frac{43}{3}}}{4} \\ x=\frac{1}{4}\pm\frac{\sqrt[]{\frac{43}{3}}}{4} \end{gathered}[/tex]

B)

For a equation of the form:

[tex]\begin{gathered} ax^2+bx+c=0 \\ \end{gathered}[/tex]

We can find the roots using the following formula:

[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \end{gathered}[/tex]

For:

[tex]\begin{gathered} 6x^2-3x-5 \\ a=6 \\ b=-3 \\ c=-5 \\ so\colon \\ x=\frac{3\pm\sqrt[]{-3^2-4(6)(-5)}}{2(6)} \\ x=\frac{3\pm\sqrt[]{9+120}}{12} \\ x=\frac{3\pm\sqrt[]{129}}{12} \\ x=\frac{1}{4}\pm\frac{\sqrt[]{129}}{12} \end{gathered}[/tex][tex]\begin{gathered} x=\frac{1}{4}+\frac{\sqrt[]{129}}{12}\approx1.196 \\ x=\frac{1}{4}-\frac{\sqrt[]{129}}{12}\approx-0.696 \end{gathered}[/tex]

Ver imagen MateuszF537802