a cone has a radius of 20 mm and a slant height of 38 mm as shown in the diagram . what is the volume of the cone to the nearest cubic meter

Respuesta :

Answer:

0.000013527m^3

Explanation:

volume of the cone is expressed as shown;

[tex]V\text{ = }\frac{1}{3}\pi r^2h[/tex]

r is the radius = 20mm

h is the height

Given slant height l = 38mm

Using the pythagoras theorem;

l^2 = h^2 + r^2

38^2 = h^2 + 20^2

h^2 = 38^2 - 20^2

h^2 = 1,444 - 400

h^2 = 1044

h = \sqrt[1044]

h = 32.31mm

Get the volume;

[tex]\begin{gathered} V\text{ = 1/3 }\times\text{ 3.14 }\times20^2\text{ }\times32.31 \\ V\text{ = 1/3 }\times3.14\times400\times32.31 \\ V\text{ = }\frac{40,581.36}{3} \\ V\text{ = }13,527.12\operatorname{mm}^3 \end{gathered}[/tex]

Converting to m^3

1mm^3 = 1e-9m^3

13,527mm^3 = x

x = 13,527 * 1e-9

x = 0.000013527m^3

Hence the volume of the cone to nearest cubic meters is 0.000013527m^3