let f(x)=log(x^2-2x) and g(x)=x/x-1. which expression represents (fog)(x)? a)log(x^3-2x^2/x-1) b)xlog(x^2-2x)/x-1 c)log(x^2-2x)/log(x^2-2x)-1 d)log(x^2-2x(x-1/(x-1)^2)

Respuesta :

Problem: let f(x)=log(x^2-2x) and g(x)=x/x-1. which expression represents (fog)(x)?

Solution:

notice that:

[tex](f\circ g)(x)\text{ = f(g(x))}[/tex]

then, the composition would be:

[tex](f\circ g)(x)\text{ = f(g(x)) = log( (}\frac{x}{x-1})^2-2\text{(}\frac{x}{x-1})\text{ )}[/tex]

this is equivalent to

[tex]=\text{ log( }\frac{x^2}{(x-1)^2}^{}-\frac{2x}{x-1}\text{)}[/tex]

this is equivalent to (Making common factor):

[tex]=\text{ log( }\frac{x^2-2x(x-1)}{(x-1)^2})[/tex]

then the correct answer would be:

[tex]=\text{ log( }\frac{x^2-2x(x-1)}{(x-1)^2})[/tex]